Vector majorization via positive definite matrices

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Majorization-Minimization Algorithm for the Karcher Mean of Positive Definite Matrices

An algorithm for computing the Karcher mean of n positive definite matrices is proposed, based on the majorization-minimization (MM) principle. The proposed MM algorithm is parameter-free, does not need to choose step sizes, and has a theoretical guarantee of asymptotic linear convergence.

متن کامل

Operator Monotone Functions, Positive Definite Kernels and Majorization

Let f(t) be a real continuous function on an interval, and consider the operator function f(X) defined for Hermitian operators X. We will show that if f(X) is increasing w.r.t. the operator order, then for F (t) = ∫ f(t)dt the operator function F (X) is convex. Let h(t) and g(t) be C1 functions defined on an interval I. Suppose h(t) is non-decreasing and g(t) is increasing. Then we will define ...

متن کامل

ON f-CONNECTIONS OF POSITIVE DEFINITE MATRICES

In this paper, by using Mond-Pečarić method we provide some inequalities for connections of positive definite matrices. Next, we discuss specifications of the obtained results for some special cases. In doing so, we use α-arithmetic, α-geometric and α-harmonic operator means.

متن کامل

Riemannian Sparse Coding for Positive Definite Matrices

Inspired by the great success of sparse coding for vector valued data, our goal is to represent symmetric positive definite (SPD) data matrices as sparse linear combinations of atoms from a dictionary, where each atom itself is an SPD matrix. Since SPD matrices follow a non-Euclidean (in fact a Riemannian) geometry, existing sparse coding techniques for Euclidean data cannot be directly extende...

متن کامل

Determinantal inequalities for positive definite matrices

Let Ai , i = 1, . . . ,m , be positive definite matrices with diagonal blocks A ( j) i , 16 j 6 k , where A ( j) 1 , . . . ,A ( j) m are of the same size for each j . We prove the inequality det( m ∑ i=1 A−1 i ) > det( m ∑ i=1 (A (1) i ) −1) · · ·det( m ∑ i=1 (A (k) i ) −1) and more determinantal inequalities related to positive definite matrices.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 1997

ISSN: 0024-3795

DOI: 10.1016/s0024-3795(96)00042-0